1. Once you've found your asteroid note it's position in image 1:
\square

2. Did you find any other asteroids? If so, tell us about them:

Measuring distance:

i. Use CONTROL+2 to blink to image 4, showing the final position of the asteroid.
ii. Select the "Measure Size" tool in the "Astro" menu.
iii. Select the option to "Add a line".
iv. Place one end of the line on the pixel position where the asteroid started.
v. Change the size and shape of the line until the other end of the line is on the asteroid's current position.
vi. The "Measure size" box will show you the size of the line in pixels.
3. Note down the line length value in the Measure Size menu. This is the distance the asteroid has travelled: \square
4. Now note down the pixel scale underneath this value (each pixel equals...). Note down the pixel scale (at the object):
5. Now multiply the pixel scale with the pixels your asteroid has travelled to get the distance in real units:
km

| total size |
| :---: |$\times \underset{\text { pixel scale }}{\square}=\frac{\mathrm{km}}{\text { distance }}$

Calculating Speed:

i. We will use the speed-distance-time triangle to work out the speed.

$$
\begin{aligned}
& d=\text { distance } \\
& s=\text { speed } \\
& t=\text { time }
\end{aligned}
$$

ii. We have distance but we still need to know time. To find this go to "Observation Details" under the "Astro" menu.
iii. Note down the time of observation 1: \square
iv. Note down the time of observation 4: \square
v. Work out the difference in time between images (remember there are 60 seconds in every minute):
minutes $=\square$ seconds
vii. Now you know the time and distance you can calculate the speed:

$$
\text { speed }=\frac{\text { distance }}{\text { time }}
$$

vii. The approximate speed the asteroid is travelling =

$$
\mathrm{Km} / \mathrm{s}
$$

