OBSERVATORY

LTImage

1. Once you've found your asteroid note it's position in image 1:
\square $y=\square$

2. Did you find any other asteroids? If so, tell us about them:

Measuring distance:

i. Open the "Size and Distance" tool under the "Astro" menu at the top of the window.
ii. Ensure you have the first image selected in the "Image Selection" panel by clicking on the button \odot next to 1 .
iii. Hover your mouse over the asteroid position but do not click.
iv. Use the arrow button on your keyboard to move to image 4.
v. Click and hold the left mouse button and drag your mouse to the new position of the asteroid in image 4 - a blue triangle should appear.
vi. Release the mouse button when you're in position and the triangle should turn yellow.
3. Note down the total size value in the right menu. This is the distance the asteroid has travelled:

> pixels
4. Now Open the "Image Properties"I under the "Astro" menu. Select "Calibration" from the box in the tool menu on the right. Note down the pixel scale (at the object): \qquad
5. Now multiply the pixel scale with the pixels your asteroid has travelled to get the distance in real units: \square
\square
total size \square
pixel scale

Calculating Speed:

i. We will use the speed-distance-time triangle to work out the speed.

$$
\begin{aligned}
& d=\text { distance } \\
& s=\text { speed } \\
& t=\text { time }
\end{aligned}
$$

ii. We have distance but we still need to know time. To find this go to "Image Properties" under the "Astro" menu.
iii. Select "The Observation" from the menu in the tool panel on the right.
iv. Note down the time of observation 1: \square
v. Note down the time of observation 4: \square
vi. Work out the difference in time between images (remember there are 60 seconds in every minute):
minutes $=\square$ seconds
vii. Now you know the time and distance you can calculate the speed:

$$
\text { speed }=\frac{\text { distance }}{\text { time }}
$$

vii. The approximate speed the asteroid is travelling =

