Circular Mirrors:	Diameter	1 m	2 m	3 m	4 m
Gaps between mirrors = light lost Gaps within this mirror set-up reduce the total collection area by 10\% To calculate your effective mirror diameter: = diameter of single mirrors combined $x 0.9$	Mirror				
	Cost	£2 million	$£ 4$ million	£8 million	£16 million
	Weight	500 kg	1000 kg	1500 kg	2000 kg
Hexagonal Mirrors:	Diameter	1 m	2 m	3 m	4 m
To calculate your effective mirror diameter: = diameter of single mirrors combined	Mirror				
	Cost	£3 million	£6 million	$£ 12$ million	£24 million
Note: sizes of mirrors can be combined	Weight	415 kg	830 kg	1240 kg	1654 kg

You must consider...

\star How the different shaped mirrors fit together and how much light is lost through any gaps.
is The overall weight of their mirror - the lighter the better - this will affect which materials they can use for the structure.
it How easily the mirror will be able to be transported to site.
is The total diameter of the mirror - the larger the mirror the fainter the objects they will be able to see - this means that they will be able to look for objects at greater distances. is The price of the mirror.
\& How easily the mirror can be assembled on site.

